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ABSTRACT: NOAA has been developing a fully coupled Earth system model under the Unified Forecast System frame-
work that will be responsible for global (ensemble) predictions at lead times of 0–35 days. The development has involved
several prototype runs consisting of bimonthly initializations over a 7-yr period for a total of 168 cases. This study leverages
these existing (baseline) prototypes to isolate the impact of substituting (one-at-a-time) parameterizations for convection,
microphysics, and planetary boundary layer on 35-day forecasts. Through these physics sensitivity experiments, it is found
that no particular configuration of the subseasonal-length coupled model is uniformly better or worse, based on several
metrics including mean-state biases and skill scores for the Madden–Julian oscillation, precipitation, and 2-m temperature.
Importantly, the spatial patterns of many “first-order” biases (e.g., impact of convection on precipitation) are remarkably
similar between the end of the first week and weeks 3–4, indicating that some subseasonal biases may be mitigated through
tuning at shorter time scales. This result, while shown for the first time in the context of subseasonal prediction with differ-
ent physics schemes, is consistent with findings in climate models that some mean-state biases evident in multiyear averages
can manifest in only a few days. An additional convective parameterization test using a different baseline shows that
attempting to generalize results between or within modeling systems may be misguided. The limitations of generalizing
results when testing physics schemes are most acute in modeling systems that undergo rapid, intense development from
myriad contributors}as is the case in (quasi) operational environments.
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1. Introduction

Numerical prediction of the future state of the atmosphere (as
part of the larger Earth system) theoretically can range in tem-
poral scale from minutes (e.g., Stensrud et al. 2009; Benjamin
et al. 2016) to millennia (e.g., Sepulchre et al. 2020). In current
practice, atmospheric prediction falls into one of two distinct re-
gimes. The first regime is often termed “numerical weather pre-
diction” (NWP), for time scales less than ;2 weeks, which
corresponds to the theoretical deterministic predictability limit
in the midlatitudes (Lorenz 1969), beyond which the memory of
the atmospheric initial conditions is lost. The second regime is
often termed “climate modeling” and covers time scales of no
less than;3 months. In this regime, the mean state of the atmo-
sphere is regulated by fluctuations in slowly evolving external
forcings including sea surface temperature (SST) and net radia-
tion at the top of the atmosphere.

Atmospheric prediction at the subseasonal time scale falls
in the temporal gap between NWP and climate modeling.
Efforts to close this gap by researching and providing subsea-
sonal forecasts have existed for over a decade (e.g., Brunet

et al. 2010; Kirtman et al. 2014; Vitart et al. 2017; Sun et al.
2018a,b; Pegion et al. 2019). Advancements in subseasonal
prediction have focused on phenomena such as the Madden–
Julian oscillation (e.g., Rodney et al. 2013) and various global
teleconnections that link regions of high and low predictabil-
ity (e.g., Stan et al. 2017; Yamagami and Matsueda 2020). The
concept of “forecasts of opportunity” (Jones et al. 2011),
which aims to identify situations in which subseasonal predict-
ability may be enhanced relative to a long-term baseline, has
also proved to be invaluable.

In the United States, the National Oceanic and Atmo-
spheric Administration (NOAA) is the government agency
tasked with providing official forecasts across a range of time
scales to a variety of stakeholders. At the subseasonal time
scale (weeks 3–4), NOAA provides operational 2-m tempera-
ture forecasts and experimental precipitation forecasts to
users in a wide range of sectors including but not limited to
agriculture, wildfire, environmental resource management,
public health, and energy. Since 2011, NOAA has been run-
ning the Climate Forecast System, version 2 (CFSv2; Saha
et al. 2014), coupled Earth system model in operations to pro-
vide subseasonal to seasonal forecasts. As can be inferred
from its name, CFSv2 was designed as a “climate model”
rather than an NWP model (cf. two paragraphs previous);
moreover, it has remained essentially unchanged during its
operational lifetime}in contrast with the NWP-based Global
Forecast System (GFS), which provides forecasts out to
16 days and has been updated at least six times since 2011.
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In recent years, NOAA has used the Unified Forecast Sys-
tem (UFS) framework to consolidate its operational modeling
products. Eventually, the Global Ensemble Forecast System
(GEFS) will be a fully coupled (atmosphere, ocean, sea ice,
wave, chemistry, and land surface) Earth system model pro-
viding global ensemble forecasts for lead days 0–35. A major
step toward this goal was the September 2020 release of
GEFSv12 (Zhou et al. 2022). This release provides 35-day
ensemble forecasts initialized once per day at 0000 UTC but
instead of a full ocean model, GEFSv12 uses an SST that is
taken from CFSv2: specifically, from the raw CFSv2 SST fore-
cast the historical model bias (as functions of initialization date,
lead time, and location) is removed in order to obtain a predic-
tive, bias-corrected CFSv2 SST field for use in GEFSv12.
Ongoing work at NOAA, led by the Environmental Modeling
Center (EMC), has produced eight different iterations (sets) of
prototype coupled subseasonal hindcasts; each set of hindcasts
contains the same 168 initial condition dates. As explained be-
low, this coupled prototype framework provides the starting
point for the physics sensitivity tests that are the focus of the pre-
sent study.

One of the most consequential components of atmospheric
models based on physical laws (as opposed to various empiri-
cal models) is the representation of processes not explicitly
resolved on the model grid, that is, subgrid-scale physical
parameterization schemes. A nonexhaustive list of processes
represented by these physics schemes includes convection
(except for the highest resolution models, e.g., Miyamoto et al.
2013), cloud microphysics, planetary boundary layer, surface
fluxes, and radiative transfer. Subgrid-scale parameterizations
require some set of assumptions to be made and thus are in-
herently imperfect; different assumptions and approaches
yield different physics schemes. Parameterization schemes are
often compatible with multiple atmospheric dynamical cores,
and one dynamical core is often compatible with multiple
parameterizations of the same process,1 giving users and de-
velopers the flexibility to choose which physics schemes to
use. The choice of physics scheme is known to have a tremen-
dous impact on the state of the simulated atmosphere both in
NWP [e.g., for planetary boundary layer (Hu et al. 2010); con-
vective parameterization (Gómez et al. 2011); surface fluxes
in a tropical cyclone (Green and Zhang 2013); cloud micro-
physics (McMillen and Steenburgh 2015)] and in long-range
climate modeling [e.g., convective parameterization (Song
and Zhang 2018); cloud microphysics (Lohmann et al. 2007;
Hazra et al. 2017); a combination of boundary layer, shallow
convection, and cloud macrophysics (Bogenschutz et al.
2013)]. The papers cited in the previous sentence represent a
miniscule fraction of the peer-reviewed literature document-
ing physics sensitivity.

Despite the abundance of studies documenting the sensitiv-
ity of various atmospheric simulations to subgrid-scale physics
at both the NWP and climate time scales, there is relatively
little controlled physics sensitivity research2 at the subseasonal
time scale (Green et al. 2017; Zhu et al. 2018; Guimarães et al.
2020; Kaur et al. 2022). This is due to a combination of two
factors. First, subseasonal modeling in general is a much
newer research area as compared with the more than one-half
of a century spent developing NWP and climate models.
Second, subseasonal-length simulations require tremendous
computational resources, which is a problem that becomes ex-
acerbated when trying to build up sufficiently large sample
sizes for robust results.3 Due to a lack of controlled physics
experiments at the subseasonal time scale, the temporal evo-
lution of the impact of physics changes (i.e., differences at
day 1 vs those at week 1 vs those at weeks 3–4) was poorly
understood.

The aforementioned lack of understanding on the temporal
evolution in the subseasonal (to seasonal) time scale is not
limited just to physics sensitivity. At the NWP time scale, it is
well-known that errors become saturated on the order of
;2 weeks (e.g., Dalcher and Kalnay 1987). Moreover, on the
climate time scale, Ma et al. (2021) showed that model biases
related to parameterizations of moist processes seen in multi-
year climate runs develop as quickly as a few days. At the
subseasonal–seasonal time scales, however, the annual cycle
becomes a factor: the mean state of the Earth system is very
different in the boreal winter (austral summer) than in the
boreal summer (austral winter). Thus, there is a period of
time centered on 6 months, but with somewhat unknown
bounds at both ends, for which model errors may differ sub-
stantially from what is found in the first few days (or after a
year). The present work provides an opportunity to examine
whether the annual cycle begins to impact the model biases at
the subseasonal time scale.

The purpose of this study is to document in a controlled
setting the impacts of changing various physical parameteriza-
tions on subseasonal forecasts within the coupled UFS frame-
work. Specifically, using the “Prototype 5” experiment as a
baseline (Stefanova et al. 2022, hereinafter S22), three addi-
tional sets of experiments were conducted: one in which the
convection scheme was changed; one in which the cloud mi-
crophysics scheme was changed; and one in which the plane-
tary boundary layer scheme was changed. An additional test
swapping out the convection scheme was performed but with
“Prototype 7” as a baseline (S22), providing an opportunity

1 As part of the transition to the UFS framework, NOAA has
adopted the Common Community Physics Package to facilitate
community-based atmospheric physics scheme development across
a variety of dynamical models. More information can be found
online (https://dtcenter.org/community-code/common-community-
physics-package-ccpp).

2 Here, controlled physics sensitivity research means that phys-
ics schemes are modified (or replaced) within the same modeling
system such that differences between two sets of runs can be attrib-
uted to the changes in the physics. As with any Earth system
model, nonlinear interactions must be considered when attempt-
ing to isolate the impacts of individual physical processes, and
looking at aggregates of many cases is preferred to a single case
study.

3 In climate model physics tests, one way to collect a “large”
sample is to conduct an extremely long simulation and treat each
annual cycle as a quasi-independent realization (e.g., Jia et al.
2010).
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to determine which conclusions may be baseline-specific ver-
sus those that may be more generalized.

The remainder of this paper is organized as follows. Section 2
details the data and experimental methodology, including de-
scriptions of the overall model, the various physics schemes
tested, and verification strategy. Section 3 presents results, first
focusing on Prototype 5 and then comparing Prototype 5 with
Prototype 7. A discussion and the conclusions are provided in
section 4.

2. Data and experimental methods

a. UFS description

The UFS is an evolving system with numerous configurations;
results presented in this research utilized two prototype versions
of the “fully coupled” UFS: “Prototype 5” and “Prototype 7”
(S22). For brevity, only the most essential information about
these prototypes is described here; interested readers are re-
ferred to S22 for a complete description.

In Prototype 5 (hereinafter “P5”), UFS was configured as
an Earth system model that coupled models of the atmo-
sphere [Finite-Volume Cubed-Sphere Dynamical Core (FV3;
Harris et al. 2021)], ocean [version 6 of the Modular Ocean
Model (MOM6; Adcroft et al. 2019)], sea ice [version 6 of
the Los Alamos Sea Ice Model (CICE6)], and a surface wave
model (WAVEWATCH III; WAVEWATCH III Development
Group 2016). MOM6 has 75 hybrid depth-isopycnal vertical
coordinates and shares with CICE6 a 0.258 tripolar grid mesh;
WAVEWATCH III uses a regular 0.58 grid.

In P5, FV3 had a horizontal resolution of ;25 km and
64 hybrid vertical layers. Atmospheric physics within FV3 uti-
lized the Common Community Physics Package framework,
with default parameterizations including the scale-aware Sim-
plified Arakawa–Schubert (SAS) scheme for convection (Han
and Pan 2011), hybrid Eddy-Diffusivity Mass-Flux scheme
(hereinafter GFS-PBL; Han et al. 2016) for planetary bound-
ary layer (PBL), the Geophysical Fluid Dynamics Laboratory
(GFDL) cloud microphysics scheme (Zhou et al. 2019; Harris
et al. 2020), the Rapid Radiative Transfer Model for General
Circulation Models (RRTMG; Iacono et al. 2008) for both
shortwave and longwave, and the Noah land surface model
(Mitchell et al. 2005). The physics time step was 450 s. To
account for the mismatch in grid meshes, variables in P5 were
passed between component models by conservative grid inter-
polation followed by a nearest neighbor fill.

Atmospheric initial conditions in P5 were from the Climate
Forecast System Reanalysis (CFSR; Saha et al. 2010). Ocean
initial conditions were obtained from the Climate Prediction
Center (CPC; S22). Sea ice initial conditions were derived
from the CPC Sea Ice Initialization System (Collow et al.
2019; Liu et al. 2019). Wave initial conditions were created
through a spin-up process forced by CFSR 10-m wind speeds
and ice concentrations (S22).

Prototype 7 (hereinafter “P7”) was run in the fall of 2021 (a
full year after P5) and featured significant changes from P5.
These changes include but are not limited to: an increase in FV3
vertical layers to 127 (model top raised from ;54 to ;80 km)

and reduction in atmospheric physics time step to 300 s (note:
P7 had the same horizontal resolution as P5); the implementa-
tion of a “fractional land mask” (S22) allowing for rigorous
air–sea flux conservation; and updates to essentially all of the
atmospheric physics (e.g., Han et al. 2021) including a change in
land surface model from Noah to Noah-multiparameterization
(“Noah-MP”; Niu et al. 2011; Yang et al. 2011). There were also
updates to the ocean, sea ice, and wave models. Another major
change that is particularly relevant for the results presented in
this study is that atmospheric (and wave) initial conditions previ-
ously provided by CFSR for P5 were changed to the GEFSv12
Reanalysis (Hamill et al. 2022). It is important to note that for
both P5 and P7, all simulations can be thought of as “cold starts”
in that there was no native cycling data assimilation.

As described in the previous section, evaluation of a cou-
pled subseasonal modeling system requires a sufficiently large
sample of cases initialized throughout the year and across
multiple years. The sample size of cases is constrained by lim-
ited computational resources. Therefore, all coupled UFS
subseasonal prototypes conducted by NOAA’s EMC}as
well as the additional physics sensitivity test experiments con-
ducted for this research, described in section 2b}follow the
same protocol: bimonthly initializations (on the 1st and 15th of
every month) for a 7-yr period from 1 April 2011 to 15 March
2018, giving a total of 168 initial condition dates. Hindcasts
(retrospective forecasts) from each initialization date are inte-
grated out to 5 weeks (35 days).

b. Sensitivity test setup

The overall theme of this study is to investigate the sensitiv-
ity of subseasonal simulations (hindcasts) to changes in atmo-
spheric physical parameterizations of (i) convection; (ii) cloud
microphysics; and (iii) planetary boundary layer. This is pri-
marily accomplished through three additional sets of experi-
ments that use EMC’s P5 as a common baseline but use an
alternative parameterization for one of the three aforemen-
tioned subgrid-scale processes. Table 1 summarizes the four
sets of P5-based experiments; “CNTL” is the control (i.e.,
baseline) P5 against which the other experiments are com-
pared. More detailed descriptions of the physics schemes eval-
uated in the experiments are given below. It should be noted
that all of the parameterizations tested are in a constant state
of development and tuning, such that the results gleaned from
these experiments may appear different as schemes are up-
dated. To get a sense of the impact of changing baseline [i.e.,
accounting for the fact that model (physics) development is

TABLE 1. Overview of the four experimental configurations
used to test the impact of various physics schemes on subseasonal
hindcasts within the P5 framework. More details are provided in
the main text.

Expt
Convective
scheme PBL scheme

Microphysics
scheme

CNTL saSAS GFS-PBL GFDL
GF GF GFS-PBL GFDL
MYNN saSAS MYNN GFDL
THMP saSAS GFS-PBL Thompson
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always occurring], section 3b repeats the “CNTL” and “GF”
experiments except using the framework of P7 instead of P5.

1) CONVECTIVE PARAMETERIZATIONS

The scale-aware SAS scheme was used as EMC’s default
convective parameterization scheme for both P5 and P7.
More complete details of the philosophy behind this scheme
can be found in Han and Pan (2011), Han et al. (2017, 2020,
2021). The alternative convective parameterization tested in
this study is the Grell–Freitas (GF; Grell et al. 1991; Grell and
Devenyi 2002; Grell and Freitas 2014; Freitas et al. 2021).
Both SAS and GF have their origins in the same mass-flux
convective parameterization originally implemented in the
Rapid Update Cycle model and described by Grell (1993). A
detailed description of the relationships of the two schemes
and how they developed over the last few decades can be
found in Lin et al. (2022).

The GF scheme is a more recent development with signifi-
cant new additions and fundamental changes relative to previ-
ous versions [such as the Grell and Devenyi (2002) scheme].
It introduced scale-awareness, aerosol-awareness, and a very
different way to derive normalized mass flux. GF envisioned
that probability density functions should characterize the
mean statistical properties of deep, congestus, and shallow
convection and used a beta function to estimate each profile
[see Freitas et al. (2021) for details]. Entrainment and detrain-
ment rates are then derived from the normalized profiles, as-
suming statistically representative initial entrainment rates for
each type. While many other modifiable parameters in GF
and SAS are still used with the same names (e.g., autoconver-
sion and cloud water detrainment constants), they have
different values in the schemes. In addition, mixed-phase
microphysics impacts were included in GF (Freitas et al.
2021). Variants of GF and SAS were tested in the frameworks
of both P5 and P7.

2) CLOUD MICROPHYSICS PARAMETERIZATIONS

The Geophysical Fluid Dynamics Laboratory (GFDL)
microphysics scheme was used by EMC for P5 and P7. This
scheme has its roots from one first described by Lin et al.
(1983) and is described more fully in Zhou et al. (2019) and
Harris et al. (2020). Over the past decade, much of the devel-
opment of this single-moment six-category microphysics
scheme has been focused on GFDL’s global cloud-resolving
models. The Thompson microphysics parameterization (e.g.,
Thompson et al. 2008) is single moment for snow and graupel
and double moment for cloud ice, rain, and cloud water
(Thompson and Eidhammer 2014). The Thompson scheme
has been mainly developed for regional weather applications
but has recently garnered interest in the global modeling commu-
nity. In fact, independent of the results of this study, EMC
elected to use Thompson microphysics for the baseline Prototype
8 of the coupled UFS. Number concentrations for microphysics
species are diagnosed in single-moment schemes but predicted in
double-moment schemes. An idealized study of a squall line
(Morrison et al. 2009) found the double-moment scheme to pro-
duce higher precipitation rates than the single-moment scheme

in the stratiform region but lower rates in the convective re-
gion. Conversely, a head-to-head comparison of Thompson
and GFDL microphysics in FV3 (run in a regional configura-
tion with 3-km horizontal grid spacing) found that the Thomp-
son scheme had much heavier precipitation in convective
storms than the GFDL scheme (Potvin et al. 2019). These
conflicting results make it impossible to predict a priori
the behavior of different microphysics schemes in global
subseasonal-length simulations. It should be noted that when
the Thompson scheme was implemented for testing within P5
(Table 1), two of the initial condition dates failed; further inves-
tigation revealed that P5 was somewhat prone to crashes in
other parts of the model and that common efforts to circumvent
crashes (such as reducing the model physics time step) proved
unsuccessful. Thus, 166 cases of P5 with Thompson microphys-
ics are compared with 168 cases of the baseline P5; this small
difference in case size (;1.2% fewer cases for Thompson)
should not substantially impact any of the results presented
herein.

3) PLANETARY BOUNDARY LAYER

PARAMETERIZATIONS

The GFS PBL scheme (“GFS-PBL”; Han et al. 2016) was
used as the default planetary boundary layer parameterization
by EMC in both P5 and P7. The Mellor–Yamada–Nakanishi–
Niino (MYNN) boundary layer scheme originated half a
century ago (Mellor and Yamada 1974) and evolved with a
primary focus on limited-area (as opposed to global) model-
ing applications (e.g., Nakanishi 2001; Nakanishi and Niino
2004, 2006, 2009; Olson et al. 2019). The main differences be-
tween GFS-PBL and MYNN are as follows. First, MYNN es-
timates its own subgrid-scale clouds, which are used to help
regulate the turbulent mixing within cloudy environments,
and these clouds are also used for coupling to the radiation
scheme; in contrast, GFS-PBL does not produce its own
clouds, instead relying on a stand-alone shallow-cumulus
scheme that will also perform the nonlocal mixing in shallow-
cumulus environments. Second, in dry (noncloudy) boundary
layers, MYNN uses the same mass-flux scheme as used for
shallow-cumulus environments: a 10-plume (assuming none
of the plumes condense in a dry environment) dynamical
model to perform the nonlocal mixing across the PBL top, al-
lowing for the same physics to be used seamlessly across dry-
cloudy boundary layers. The GFS-PBL uses a single plume
mass-flux scheme in dry PBLs where the single plume is ter-
minated at the PBL top, not allowing entrainment processes
to be represented by its mass-flux scheme. For MYNN testing
in P5 (Table 1), one of the initial condition dates failed for simi-
lar reasons as the two failures in Thompson described above.
Thus, 167 cases of P5 with MYNN PBL are compared with 168
cases of the baseline P5; this represents a difference in sample
size of less than 1% and should not impact the findings.

c. Postprocessing and verification

All model output variables were postprocessed to a regular
18 3 18 grid, consistent with EMC’s own internal evaluation
practices for subseasonal forecasts. Output in the vertical
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dimension was mapped to standard isobaric levels. In the tem-
poral dimension, model output was available every 6 h; how-
ever, this paper presents results that are averaged daily,
weekly (e.g., “week 1” is the first 7 days), or biweekly (specifi-
cally, weeks 3 and 4 combined). The use of longer analysis/
verification windows with increasing lead time is common in
subseasonal prediction (Zhu et al. 2014). To maintain a large
sample size, results presented incorporate all initialization
dates rather than subsetting by initialization season [e.g.,
June–July–August (JJA) for boreal summer].

For this particular work, a variety of verification databases
were used. Precipitation was obtained from the Tropical
Rainfall Measuring Mission 3B42 product (TRMM; Liu et al.
2012) for the global evaluation and the Climatology-
Calibrated Precipitation Analysis (CCPA; Hou et al. 2014)
for the coterminous United States (CONUS) evaluation. All
other data, including 2-m temperature (“T2m”) over land, as

well as kinematic and thermodynamic variables on isobaric
surfaces, were verified against reanalyses used to generate
initial conditions: specifically, CFSR for P5 and GEFSv12 Re-
analysis for P7. The change in verification source between
prototypes is arguably necessary for T2m, because this vari-
able is a highly diagnosed product that is sensitive to factors
such as surface land use properties and near-surface vertical
resolution. By verifying T2m against the analysis used to
create the model’s initial conditions, therefore, prognostic
“biases” are more reflective of upscale error growth rather
than simply highlighting areas of rugged terrain and/or sharp
gradients in bulk land surface properties.

The next section shows model verification of a multitude of
fields using various metrics. Mean-state biases are shown in
map form not only for the variables of interest to end-users of
subseasonal forecasts (precipitation and T2m), but also for
200-hPa zonal wind (“U200”) and for geopotential height at

FIG. 1. (left) Annual T2m biases in lead week 1 for each of the four P5 experiments (cf. Table 1). (right) Difference
fields between each of the three sensitivity experiments (GF_5, MYNN_5, and THOM_5) and CNTL_5 for lead
week 1. Units are kelvins.
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500 hPa (“Z500”). Biases as a function of height and lead
time are shown for temperature over the entire globe as well
as the tropics (208S–208N) and extratropics (208–808 latitude).
Anomaly correlation coefficients – both for Z500 in the
Northern Hemisphere and for the bivariate real-time multi-
variate Madden–Julian oscillation (RMM; Wheeler and
Hendon 2004) – will also be presented for the experiments.
Heidke Skill Scores of precipitation forecasts further demon-
strate the extremely limited predictive capabilities of this field
at subseasonal time scales.

3. Results

a. Impact of physics changes relative to a fixed baseline
(prototype 5)

1) MEAN-STATE BIASES

Interrogation of mean-state biases is a critical component of
model evaluation and development. Although postprocessed

bias correction is critical in an operational setting, this proce-
dure assumes that all biases are independent and thus does
not actually address root cause, or account for the inherent
interdependencies between variables. Instead, developers of
(atmospheric) models aim to minimize bias through changes
to the code (typically, subgrid-scale physical parameterization
schemes) based on physical reasoning. As an example, Kim
et al. (2019) established, in several subseasonal-to-seasonal pre-
diction models, a partial association between Madden–Julian
oscillation (MJO; Madden and Julian 1971, 1972) propagation
biases through the Maritime Continent and Indo-Pacific biases
in lower-tropospheric moisture and surface precipitation; it
stands to reason, therefore, that reduction of these biases
(through, e.g., modification of the PBL scheme) might improve
the simulation of MJO propagation. The primary aim of the
present study, however, is more to serve as a starting point for
identifying the impact of changing various parameterization
schemes (convection, cloud microphysics, and PBL) on mean-
state biases, rather than in-depth process analyses.

FIG. 2. As in Fig. 1, but for lead weeks 3–4.
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Figures 1 and 2 show biases of T2m over land (verified
against CFSR) for lead week 1 and lead weeks 3–4, respec-
tively, for each of the P5 experiments. Difference maps be-
tween each of the three alternative physics runs (GF, MYNN,
THMP) and CNTL are also plotted. In week 1, MYNN is the
most different from CNTL, not surprising because the PBL
scheme controls near-surface turbulent transport. MYNN is
globally colder than CNTL. In contrast, GF has a very similar
T2m field to CNTL in week 1, which is not unexpected be-
cause convective schemes do not have a direct, immediate im-
pact on dry regions. However, because the convective scheme
contributes to the prognostic equations of the model (rather
than being purely diagnostic), its effects will eventually be
seen globally at longer lead times due to upscale error growth.
This is what is seen in Fig. 2: all three alternative physics runs
show differences from CNTL globally at weeks 3–4, with gen-
erally larger magnitude than week 1. The most surprising
result is in comparison of Figs. 1 and 2: the bias patterns

established in week 1 are strikingly similar to those in weeks
3–4. For example, in MYNN for both week 1 and weeks 3–4
the African continent has generally warm biases at its northern
and southern ends, with cool biases in between; another exam-
ple can be seen in the GF minus CNTL plots, with a streak of
blue (GF colder than CNTL) oriented northwest to southeast
across South America. This result has significant implications
for future development of subseasonal prediction models, as
discussed later. It should be noted that these figures are not
meant to convey superiority or weakness of any particular
scheme. Model development, particularly within UFS, has pro-
ceeded at a rapid pace; section 3b’s comparison of CNTL and
GF within the P7 framework highlights how some results are
changed by the underlying model baseline.

Figures 3 and 4 display precipitation biases for week 1 and
weeks 3–4, respectively. Note that “mean” biases for each ex-
periment only cover the TRMM domain, whereas differences
between experiments are computed globally. Compared to

FIG. 3. As in Fig. 1, but for precipitation (mm day21). Note that biases in the left column do not cover the high
latitudes, whereas differences in the right column are global.
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CNTL, GF has more precipitation near the Maritime Continent
but less in other tropical areas (including South America)}
similar patterns exist at both week 1 and weeks 3–4. THMP has
substantially more precipitation than CNTL over the extratropics,
although the spatial patterns are somewhat different between
lead times. Because the dominant mechanism of precipitation in
the tropics (extratropics) is convective (stratiform) processes, it
makes sense that GF (THMP) differs most from CNTL in these
respective regions. In contrast, MYNN has globally slightly more
precipitation than CNTL despite sizeable areas of less precipita-
tion in the tropics. Planetary boundary layer processes do not
have a “first order” direct effect on precipitation in the sameman-
ner as representations of convection or cloud microphysics but do
have a “second order” indirect effect (particularly over the ocean)
in terms of moisture transport to the free atmosphere. Overall,
there is some similarity between the bias patterns in week 1
versus weeks 3–4, but not nearly of the same level as for
T2m. Thus, while there may be some utility in deducing sub-
seasonal precipitation biases through shorter runs, this

should be limited to modifications in first-order processes
(e.g., convection and cloud microphysics) and applied with
more caution.

Subseasonal forecasting relies heavily on various global tel-
econnections (e.g., Black et al. 2017; Mariotti et al. 2020). It is
worthwhile to look at the biases of mass and momentum fields
[here, zonal winds at 200 hPa (U200) and 500-hPa geopoten-
tial height (Z500)] because systematic errors in representing
teleconnections will hamper predictions. Because these free-
atmosphere, quasi-balanced fields evolve more slowly than
T2m or precipitation, their biases at week 1 are very small
(not shown) and thus are not considered further. Figure 5
shows Z500 and U200 biases for each P5 experiment at weeks
3–4. For Z500, all experiments have a net positive bias, and
high latitudes often show a high bias. MYNN has a negative
bias in the tropics, which combined with its extratropical bias
pattern suggests a weaker midlatitude height gradient. GF has
a stronger positive bias in the tropics than the midlatitudes,
suggesting a stronger height gradient – this is consistent with

FIG. 4. As in Fig. 3, but for lead weeks 3–4.
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stronger U200 westerlies in the northern Pacific. Otherwise,
U200 biases overall are characterized by considerable spatial
variability between positive and negative sign, and the U200
difference fields (experiment minus CNTL, not shown) are
even noisier. The lack of any coherent pattern in the U200
bias maps suggests that parameterizations of convection,
cloud microphysics, and planetary boundary layer may not
systematically impact the upper-tropospheric circulation.

Another way to interrogate mean-state biases is to look at
vertical height versus lead time plots aggregated over various
areas such as the global, hemispheric (208–808 latitude), and
tropical (208S–208N) domains. Figure 6 does this for tempera-
ture; looking at the figure, biases composited globally are very
similar to those in the Northern Hemisphere (first two rows)
and the Southern Hemisphere (not shown). This figure also
shows how the sign of the temperature bias for each pressure

level becomes established within the first ;7 days and then
grows in magnitude throughout the remainder of the 35-day
forecast. Thus, for temperature, model tuning for subseasonal-
length biases could potentially be accomplished via shorter
(7–10 day) integrations, which would be a major computational
savings. The nontropical biases for CNTL, GF, and THOM are
all very similar; MYNN biases in the troposphere}particularly
the lowest 300 hPa (i.e., closest to the boundary layer)}are
substantially different from the other three experiments, as
would be expected when changing the PBL scheme. In the
tropics, GF is most different than CNTL between 500 and
100 hPa, showing the impact of convective parameterization on
free-tropospheric temperature. Similarly, THOM differs most
from CNTL between 300 and 100 hPa, demonstrating the im-
pact of the cloud microphysics scheme on upper-tropospheric
temperature. Somewhat surprising is that MYNN is cooler than

FIG. 5. Annual biases for lead weeks 3–4 for each of the four P5 experiments in (left) Z500 (m) and (right) U200 (m s21).
Note the different color-bar scales.
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CNTL not just in the tropical boundary layer but also in much
of the free atmosphere. It is speculated that the free atmo-
spheric differences are a result of secondary effects, namely, dif-
ferent representations of PBL flux impact the organization/
distribution of tropical convection and in turn affect the temper-
ature, but a more thorough investigation is beyond the scope of
this paper. Specific humidity biases were also examined (not
shown); because moisture decreases rapidly going poleward,
global composites most resembled those of the tropics and
indicated}as expected}that changing PBL scheme had the
greatest impact in the lowest levels of the atmosphere, whereas
convection and cloud microphysics had larger impacts in the
free atmosphere.

2) SKILL SCORES

Beyond examining mean-state biases, it is useful to com-
pare the performance of the various physics schemes within
the P5 framework in terms of skill score. Figure 7 shows the
anomaly correlation coefficients for Z500 in the Northern
Hemisphere (specifically, 208–808N) for the first 16 days of all
forecasts. Beyond this time, Z500 skill is very low as expected
due to intrinsic predictability limits. In general, changing the

physics scheme has no statistically significant impact on Z500
anomaly correlations. However, this is not the case for
THOM, which within the P5 framework has statistically sig-
nificantly worse skill than CNTL in the first 192 h in the
Northern Hemisphere. In the Southern Hemisphere (not
shown), no experiment was statistically significantly different
from CNTL for Z500 skill. Despite the lower (P5) skill in
THOM over the Northern Hemisphere, EMC chose to use
Thompson over GFDLmicrophysics for P8 because parallel test-
ing with later versions of UFS (at shorter forecast lead times) re-
vealed Thompson to produce better forecasts than GFDL (not
shown). As detailed further in section 3b, extreme caution must
be used in trying to generalize the findings of this paper, namely:
results herein should not be used to draw conclusions about
which physics schemes are better or worse than others. Physics
schemes are constantly being updated, and the other components
of models that interact with these schemes are also constantly be-
ing updated.

Although a systematic investigation into the effects of vary-
ing physics schemes on MJO is beyond the scope of this
paper, it would be remiss not to provide a cursory look at
forecast performance. Figure 8 shows the anomaly correlation
of the bivariate RMM index for each of the P5 experiments.

FIG. 6. Pressure vs lead-time temperature biases (K) for each of the four P5 experiments (left) CNTL_5, (left center) GF_5,
(right center) MYNN_5, and (right) THOM_5 for the (top) global mean, (middle) Northern Hemisphere (208–808N), and (bottom) tropics
(208S–208N). Note the different color-bar scales.
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The P5 experiments have 17–20 days of skillful MJO fore-
casts, using the typical correlation threshold of 0.5. Cursory
investigation of RMM phase and amplitude errors (not
shown) reveal an amplitude too weak in the first;7 days, and
then too strong for the remainder of the 35-day forecast; all
experiments are also too slow in weeks 3 and 4. The THOM
experiment performs the best in terms of RMM, although it
was shown that this experiment had the lowest Z500 skill
(Fig. 7). There is no reason to expect that a particular model
configuration with the best (or worst) Z500 skill will perform
similarly for RMM, but the THOM result underscores the
difficulties faced by operational centers in implementing
changes to a model: some metrics may improve, but others
may degrade.

Finally, the skill of precipitation in CONUS is examined
through the Heidke skill score (HSS), with three categories
(below, near, and above normal) and based on the CCPA cli-
matology. Note that model climatology was not considered at
all. The HSS for precipitation falls off dramatically by Week 2,
and the only location with HSS above 50% is California (not
shown). Figure 9 shows HSS aggregated over CONUS for
each lead week and each experiment. Clearly, direct predic-
tion of precipitation at subseasonal time scales over the United
States is a daunting challenge. Aggregating weeks 3 and 4 to-
gether does not change skill compared to either of the two
weeks separately. No single experiment is consistently better
(or worse) than the others: thus, swapping physics schemes
within the same baseline model framework does not have a
clear impact on CONUS precipitation prediction. In the next
subsection, the impact of changing the baseline is briefly
examined.

b. Impact of changing baseline

So far, results have been presented relative to a common
baseline (coupled UFS prototype 5, P5). Within P5, it was
shown that mean-state bias patterns at weeks 3–4 are often es-
tablished within the first week, and that no physics scheme
tested is uniformly superior or inferior. However, Earth sys-
tem models are constantly undergoing simultaneous develop-
ment on multiple fronts (initialization strategies, numerics,
subgrid-scale physics, etc.), and it is computationally infeasi-
ble to conduct one-at-a-time tests for each and every change
made to a modeling system. Moreover, the highly nonlinear
and interconnected nature of the Earth system guarantees
that any one change will have global impacts. Thus, when
multiple (seemingly beneficial) changes are made at once,
there is no guarantee that the net result will be uniformly pos-
itive. Similarly, any conclusions drawn from the P5-based
experiments shown above are strictly valid within the P5
framework: subsequent developments in the coupled UFS
prototype framework may impact, for example, how chang-
ing the convective scheme changes results. To demonstrate

FIG. 7. (top) Anomaly correlation (AC) coefficients for Northern
Hemisphere (208–808N) Z500 in the first 384 forecast hours for
each of the four P5 experiments. (bottom) Differences in GF_5,
MYNN_5, and THOM_5 with respect to CNTL_5.

FIG. 8. Bivariate correlation (between forecast and observed) of
RMM index for each of the four P5 experiments as a function of
forecast lead day.

FIG. 9. Precipitation HSS over CONUS for each of the four P5
experiments by lead week; note that the combined weeks 3–4 fore-
cast HSS is also shown.
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this, some results from the baseline Prototype 7 (P7), as
well as a P7-based experiment with GF convection, are pre-
sented here.

Figure 10 is similar to Fig. 4 in showing weeks 3–4 precipita-
tion biases; in Fig. 10, however, CNTL and GF experiments
for both P5 and P7 are plotted. The second row of the figure
shows how the precipitation biases change from P5 to P7. It
should be noted that the different baselines have changed due
to differences that include, but are not limited to, initial condi-
tion fields, physics time steps, vertical levels, and updates to
the physics schemes. The baseline P7 has less precipitation
globally than the baseline P5, but within the GF framework
the opposite is true: GF_7 has more global precipitation than
GF_5. In comparing Figs. 4 and 10, it is seen that SAS has
more precipitation than GF for a given baseline (i.e., CNTL_7
is wetter than GF_7, and CNTL_5 is wetter than GF_5).
Looking at the bottom two rows of Fig. 10, it is obvious that

comparisons between GF and the default SAS are baseline
dependent (due, in part, to changes in both GF and SAS over
a year of model development)}particularly over South
America and the landmasses of the Maritime Continent. An-
other substantial change is that whereas GF_5 has cooler T2m
than CNTL_5 over much of Africa (cf. Fig. 2), GF_7 has
warmer T2m than CNTL_7 over that same region (not
shown). Thus, readers are warned against extrapolating
specific results from P5 to other coupled UFS prototypes,
much less to changing physics within other, non-UFS,
modeling systems. The main finding that did hold true be-
tween P5 and P7, while not explicitly shown for P7, is that
mean-state biases generally develop their spatial (horizontal
and vertical) patterns within the first week or so and then sim-
ply grow in magnitude through the subseasonal period.

Figure 11 shows how skill scores can change across base-
lines, using the RMM as an example (cf. Fig. 8). Whereas in

FIG. 10. (left) Annual precipitation biases at lead weeks 3–4 for CNTL_5, CNTL_7, GF_5, and GF_7. (right) Differ-
ences between various experiments (specifically, CNTL_7 2 CNTL_5, GF_5 2 CNTL_5, and GF_7 2 CNTL_7).
Units are millimeters per day.
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P5 both GF and CNTL reached a bivariate correlation of 0.5
at ;19 days (with GF slightly better than CNTL), Fig. 11
shows that in P7 the 0.5 correlation threshold is reached at
20 days for GF and at 22 days for CNTL. Although a more
thorough examination of MJO representation in these simula-
tions is beyond the scope of the present paper, it is likely that
changes to the convective parameterizations (GF and SAS) as
well as other changes between P5 and P7 all contributed to the
differences in RMM results.

4. Discussion and conclusions

This study presented results from experiments that tested
the sensitivity of coupled (atmosphere, sea ice, ocean, wave)
Earth system simulations at subseasonal time scales (up to
35 days) to changes in parameterizations of atmospheric con-
vection, cloud microphysics, and planetary boundary layer.
This provides a comprehensive set of controlled subseasonal-
length physics sensitivity experiments to be examined. One
of the key motivations for these experiments is the ongoing
work by NOAA to upgrade their operational Global Ensemble
Forecast System (GEFS)}a modeling system that sees fairly
regular updates and is heavily relied on for forecasts in the first
2 weeks}to a fully coupled Earth system model with predic-
tions out to 35 days. Currently, operational coupled subseaso-
nal forecasts at NOAA are handled by the Climate Forecast
System, version 2 (CFSv2), which has not been updated in over
a decade.

Independent tests for convection (GF replacing the default
SAS), cloud microphysics (Thompson replacing the default
GFDL), and planetary boundary layer (MYNN replacing the
default GFS-PBL) were compared with the benchmark Proto-
type 5 (P5) run by EMC in late 2020. An additional GF versus
SAS test was conducted against the benchmark Prototype 7
(P7) run by EMC in late 2021. Within the P5 framework, it
was found that no experiment was unilaterally better or worse
than any other in terms of mean-state biases (of 2-m tempera-
ture, precipitation, mass, and momentum fields) and skill
scores (500-hPa anomaly correlation, RMM for the MJO, and
precipitation).

The most important finding was that mean-state biases
tend to manifest their spatial pattern (in both the horizontal
and vertical) within the first week, and then simply grow
in amplitude through the remainder of the 35-day simula-
tion period. As expected, the differences in mean states be-
tween any two experiments were most pronounced for
fields in which the changed physics parameterization would
have a first-order direct effect (e.g., changing the PBL
scheme had the most profound impact on near-surface tem-
perature). These results have tremendous implications for
subseasonal model development, namely, shorter runs on
the order of 1–2 weeks may be conducted instead to pro-
vide insight into how proposed changes might impact
forecast biases at longer lead times (however, bias improve-
ment may not translate into improved skill scores). With
shorter runs, the computational savings could be reallocated
to more testing and/or larger sample sizes. A somewhat
surprising result was that the bias fields of all the experi-
mental runs (and their differences from each other) for
zonal winds at 200 hPa were very noisy in the horizontal,
signaling that it may be difficult to isolate biases related to
global teleconnections that are so vital for subseasonal
prediction.

The finding that subseasonal mean-state biases are
similar to those within the first week is consistent with the
results of Ma et al. (2021), who compared short (3-day)
runs with a 16-yr-long climate run and found that many
error fields at 3 days were very similar to the average errors
from the long-term simulation. However, Ma et al.
(2021) did not consider the impact of the annual cycle; for
example, their results are often restricted to certain months
of the year (e.g., November–April in their Figs. 4–6).
The present study indicates that the impacts of the annual
cycle on bias evolution are not evident through the first
5 weeks.

Although not unexpected, the results of this work serve as
yet another warning against generalization of any apparent
benefits or deficiencies in a particular physics parameteriza-
tion. For example, it was found in P5 that GF yielded cooler
2-m temperatures than SAS over much of Africa, but the op-
posite was true in P7. Contradictory results were also seen in
RMM skill. With the rapid pace of development in many
Earth modeling systems like UFS, isolation of cause is ex-
tremely difficult.

Future work should focus on the quantification of mean-
state error growth from initialization through the subseaso-
nal time scale. This would allow model developers to
determine which biases they can attempt to tune through
shorter, more computationally feasible simulations. An-
other avenue for research is to examine the physics sensitiv-
ity at seasonal time scales and, just as important, to examine
the bias evolution}particularly through the first year,
covering one annual cycle with particular focus on the
;6-month period (especially comparing a winter season
with a summer season). Also, process-oriented diagnostics can
be employed on the hindcast sets described here to gain a
deeper understanding of the role of various physics schemes on

FIG. 11. As in Fig. 8, but for the two P7 experiments.
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subseasonal-length simulations (including their state- and
location-dependent predictability).
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